Q:

B-2-11. Find the inverse Laplace transform of s + 1/s(s^2 + s +1)

Accepted Solution

A:
Answer:[tex]\mathcal{L}^{-1}\{\frac{s+1}{s(s^{2} + s +1)}\}=1-e^{-t/2}cos(\frac{\sqrt{3} }{2}t )+\frac{e^{-t/2}}{\sqrt{3} }sin(\frac{\sqrt{3} }{2}t)[/tex]Step-by-step explanation:let's start by separating the fraction into two new smaller fractions.First, s(s^2+s+1) must be factorized the most, and it is already. Every factor will become the denominator of a new fraction.[tex]\frac{s+1}{s(s^{2} + s +1)}=\frac{A}{s}+\frac{Bs+C}{s^{2}+s+1}[/tex]Where A, B and C are unknown constants. The numerator of s is a constant A, because s is linear, the numerator of s^2+s+1 is a linear expression Bs+C because s^2+s+1 is a quadratic expression.Multiply both sides by the complete denominator:[tex][{s(s^{2} + s +1)]\frac{s+1}{s(s^{2} + s +1)}=[\frac{A}{s}+\frac{Bs+C}{s^{2}+s+1}][{s(s^{2} + s +1)][/tex]Simplify, reorganize and compare every coefficient both sides:[tex]s+1=A(s^2 + s +1)+(Bs+C)(s)\\\\s+1=As^{2}+As+A+Bs^{2}+Cs\\\\0s^{2}+1s^{1}+1s^{0}=(A+B)s^{2}+(A+C)s^{1}+As^{0}\\\\0=A+B\\1=A+C\\1=A[/tex]Solving the system, we find A=1, B=-1, C=0. Now:[tex]\frac{s+1}{s(s^{2} + s +1)}=\frac{1}{s}+\frac{-1s+0}{s^{2}+s+1}=\frac{1}{s}-\frac{s}{s^{2}+s+1}[/tex]Then, we can solve the inverse Laplace transform with simplified expressions:[tex]\mathcal{L}^{-1}\{\frac{s+1}{s(s^{2} + s +1)}\}=\mathcal{L}^{-1}\{\frac{1}{s}-\frac{s}{s^{2}+s+1}\}=\mathcal{L}^{-1}\{\frac{1}{s}\}-\mathcal{L}^{-1}\{\frac{s}{s^{2}+s+1}\}[/tex]The first inverse Laplace transform has the formula:[tex]\mathcal{L}^{-1}\{\frac{A}{s}\}=A\\ \\\mathcal{L}^{-1}\{\frac{1}{s}\}=1\\[/tex]For:[tex]\mathcal{L}^{-1}\{-\frac{s}{s^{2}+s+1}\}[/tex]We have the formulas:[tex]\mathcal{L}^{-1}\{\frac{s-a}{(s-a)^{2}+b^{2}}\}=e^{at}cos(bt)\\\\\mathcal{L}^{-1}\{\frac{b}{(s-a)^{2}+b^{2}}\}=e^{at}sin(bt)[/tex]We have to factorize the denominator:[tex]-\frac{s}{s^{2}+s+1}=-\frac{s+1/2-1/2}{(s+1/2)^{2}+3/4}=-\frac{s+1/2}{(s+1/2)^{2}+3/4}+\frac{1/2}{(s+1/2)^{2}+3/4}[/tex]It means that:[tex]\mathcal{L}^{-1}\{-\frac{s}{s^{2}+s+1}\}=\mathcal{L}^{-1}\{-\frac{s+1/2}{(s+1/2)^{2}+3/4}+\frac{1/2}{(s+1/2)^{2}+3/4}\}[/tex][tex]\mathcal{L}^{-1}\{-\frac{s+1/2}{(s+1/2)^{2}+3/4}\}+\mathcal{L}^{-1}\{\frac{1/2}{(s+1/2)^{2}+3/4}\}\\\\\mathcal{L}^{-1}\{-\frac{s+1/2}{(s+1/2)^{2}+3/4}\}+\frac{1}{2} \mathcal{L}^{-1}\{\frac{1}{(s+1/2)^{2}+3/4}\}[/tex]So a=-1/2 and b=(√3)/2. Then:[tex]\mathcal{L}^{-1}\{-\frac{s+1/2}{(s+1/2)^{2}+3/4}\}=e^{-\frac{t}{2}}[cos\frac{\sqrt{3}t }{2}]\\\\\\\frac{1}{2}[\frac{2}{\sqrt{3} } ]\mathcal{L}^{-1}\{\frac{\sqrt{3}/2 }{(s+1/2)^{2}+3/4}\}=\frac{1}{\sqrt{3} } e^{-\frac{t}{2}}[sin\frac{\sqrt{3}t }{2}][/tex]Finally:[tex]\mathcal{L}^{-1}\{\frac{s+1}{s(s^{2} + s +1)}\}=1-e^{-t/2}cos(\frac{\sqrt{3} }{2}t )+\frac{e^{-t/2}}{\sqrt{3} }sin(\frac{\sqrt{3} }{2}t)[/tex]